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Over the last eight decades, technological progress has rapidly increased: the first modern computer
was built, TVs conquered the living room of every household, the mobile phone was invented and
became 'smart', nowadays comprising of computing power beyond the imagination of early modern
computer’s creators; the internet was born, entwining people all over the world, making it possible to
access any information within a few seconds, just to name a few achievements. However, the cost of
this progress combined with Earth’s growing population is a rising demand for energy and resources,
causing global warming and destruction of the environment. Over the past few years, green
technologies, such as solar and wind energy, therefore have come to the fore as a substitute for fossil
fuels; a development that is additionally fueled by the most recent geopolitical tensions. Many
companies are trying to reduce their carbon footprint, e.g. by use of recyclable plastic or no plastic at
all in their packaging or by lowering their need for energy with modern production technology; people
overall pay more attention to sustainability.

Chemistry is no exempt to this development, as 'green chemistry', which can be described as “to design
chemicals, chemical processes and commercial products in a way that, at the very least, avoids the
creation of toxics and waste”,* shows. Nonetheless, one of the important fields of chemistry, catalysis,
still mainly relies on noble metals although unearthing of those as well as their application modification
pose a hazard to the environment. Yet there is hope that with help of so called 'non-innocent' ligands

base metals could provide for a valid substitution.

While not part of this work, but as a desired application in the future and to pay tribute to the
importance catalysis plays in chemistry, a brief historical background of it is given in the next chapter,
before the concept of non-innocent ligands and its application in catalysis will be explained. Thereafter
molecular switches, especially dithienylethene, the ligand of choice for this work, its advantages as

well as the overall motivation for this work will be discussed.

Although only a small step in the desired direction, this work may inspire ongoing research in the field
of dithienylethene as a non-innocent ligand and provide useful information for compositions and

design of such. A marathon yet to absolve, but it is always the first step to get it started.
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1.1 Catalysis

The term 'catalysis', derived from Greek word 'katdAvoic' for 'annulation’, 'untie'? was coined by
Swedish chemist J. J. Berzelius in 1835 as he tried to describe results of his studies and to refer to a
phenomenon known since the antique: that even the addition of smallest amounts of a material could
greatly effect the composition of others; an action, which was attributed to the 'philosopher’s stone'
during the Middle Ages.® Berzelius wrote: “In order to avail myself of a derivation well-known in
chemistry | will call both the catalytic force of matter and the decomposition by this matter, catalysis,

just like we understand with the word analysis the separation of the constituents.”>#

NVVAN

Ifire Water
Carth dir

Figure 1: Left: Alchemist searching for the philosopher’s stone (by Joseph Wright of Derby, 1771);° upper right:
alchemical symbols for the four elements; lower right: 17t century alchemical symbol for the philosopher’s
stone, illustrated as the interplay of the four elements of matter (fire, water, earth, air).

The first modern definition of catalysis was given by W. Ostwald in 1894 when he stated that “catalysis
is the acceleration of a slow chemical process by the presence of a foreign material”,* ¢ which he
changed to his final definition in 1901 at the meeting of the Gesellschaft Deutscher Naturforscher und
Arzte: “A calatyst is a material that changes the rate of a chemical reaction without appearing in the
final product.”®”

Nowadays a catalyst would be described as a material that accelerates a chemical reaction. Since it is
not being consumed in the process and therefore able to undergo multiple catalytic cycles, no
stoichiometric amounts of the catalyst are needed. Catalysts have no effect on the thermodynamic

equilibrium, however they provide for a faster adjustment of it. The reason for the acceleration is a

thermodynamically more beneficial transition state that can be formed by substrate and catalyst,
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leading to a lower activation energy needed compared to when the reaction is without a catalyst

(Figure 2).2

[

activation energy
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with a catalyst

Iactivation energy
r
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enthalpy

products

- >
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Figure 2: Simple energy profile of a reaction with and without a catalyst.

The first technical processes based on catalysis (without knowledge of the enzymatic reaction taking
place) were used by advanced civilizations like the Sumerians as long ago as 6000 B.C. who produced
beer through fermentation of cereals. Egyptians have used yeast for baking their bread; consumption
and therefore the knowledge of fermentation of wine has been known since Bible’s first book Genesis.’
Nonetheless, it was not until the end of 18" and early beginnings of the 19" centuries when a whole
series of new catalytic reactions were discovered, e.g. the decomposition of alcohol to ethylene and
water upon contact with heated aluminum oxide by J. Priestley in 1793, the decomposition of
ammonia upon contact with heated metals in 1813 by L. J. Thénard, the cleavage of hydrogen cyanide
when in contact with iron in 1817 by H. Davy, or the ignition of hydrogen at room temperature in the
presence of a platinum sponge in 1823 by J. W. Dobereiner, which led to the development of one of

the first modern lighters: the 'Débereiner’s lamp'.1°

Figure 3: Left: Cylinder seal showing the consumption of (most likely) beer (ca. 1800 B.C.) © Staatliche Museen
zu Berlin-Vorderasiatisches Museum, photo: Olaf M. TeSmer; right: Débereiner’s lamp
(created around 1825 — 1850).1
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However, catalysis’ most shining hours took place in 20" century when processes have been developed
that can be accounted as some of the most important in chemical industry. One of them is the Haber-
Bosch process, named after German chemists F. Haber and C. Bosch, which made it possible to produce
ammonia through hydrogen and atmospheric nitrogen. This is achieved through high pressure (> 100
bar), high temperatures (ca. 400 - 500 °C; originally up to 600 °C) and the help of an iron-based
catalyst.1® 1213 Ammonia is a key chemical in the production of fertilizers as a source for nitrogen. At
beginning of the 20™ century approximately 200.000 tons of nitrogen in form of Chile saltpeter could
be used as fertilizer for agriculture.’* Nowadays ammonia gets produced in a scale of 150.000.000
tons / year (2019),%® making it the second largest synthetic chemical product with ca. 80% of it being
used for production of fertilizers. The share of ammonia produced by Haber-Bosch process exceeds
90%, thus making it by far the most important for production of this chemical.’®> The Haber-Bosch

process therefore has played / plays a significant role in nutrition of world’s population.*> 14

Another outstanding process based on catalysis is the Ziegler-Natta polymerization for production of
polyolefins. Before its use polyethylene could only be produced via radicalic polymerization, taking
place at elevated temperatures (200 °C) and under high pressure (1.000 — 2.000 bar).*? The result of
this procedure is a polyethylene of low density due to its heavily branched structure and the contained
amorphous parts.'> 1® With help of the Ziegler catalyst, polyethylene can be obtained at room
temperature and under atmospheric pressure. Produced this way it is far less branched, leading to a

17 The Ziegler Catalyst is made of a combination of

higher crystallinity and density.'*
titanium-(lV)tetrachloride and triethylaluminium and is named after German chemist Karl Ziegler. The
second eponym behind the Ziegler-Natta polymerization is Italian scientist Giulio Natta who studied
the impact of the Ziegler catalyst on the polymerization of propene shortly after its invention (1953).
With it he was not only able to produce polymers with completely new properties; he also discovered
that polymerization using a Ziegler catalyst is stereoregular, meaning that polymers produced this way

contain a certain tacticity. Both, the invention of the metalorganic mixed catalyst and the proof of the

stereoselective polymerization it offers marked the beginning of modern plastics production.*?

Ostwald (1909), Haber (1918), Ziegler and Natta (1963) all received the honor of the Nobel Prize.
Overall achievements related to chemical and enzymatic catalysis have been recognized by the Nobel
Foundation at least 16 times, accounting for about 14 % of the awarded prizes and 18 % of the prize
winners in chemistry. Numbers, that underline the importance of catalysis for chemistry - and the

world.*®1°
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1.2 Non-innocent Ligands (NILs)

The term ‘innocent' and therefore the implied term of ‘non-innocent' with reference to ligands was
first used and invented by Danish chemist C. K. Jgrgensen in 1966.2% 2! |t became popular and widely
accepted within the community since the 90’s when interest in complexes bearing NILs greatly
increased.?? Ever since, the concept of NiLs is under running investigation in research topics like optical
materials, catalysis, energy storage and conversion, data storage, group-transfer chemistry and many
23-28

more.

Why is that? What opportunities do NILs offer and what exactly makes a ligand 'non-innocent'?

1.2.1 A Brief Historical Background

In 1962 Schrauzer and Mayweg reported on an 'unusual' nickel complex with the formula NiS4C4Ph4.2*
30 Only a few weeks later Gray and co-workers independently described metal complexes of the form

[MS4C4(CN)4]* with M = Ni, Pd, Pt amongst others.3!

2.
C6H5J:’S\ 'Si[CGHS NCIS\ ,Si[CN
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Figure 4: Left: Schrauzer and Mayweg’s nickel dithiolene complex (1),%° right: Gray and co-worker’s metal
dithiolene complexes (2) with M = Ni, Pd, Pt.3!

The peculiarity about these complexes was how to distribute the electrons among the central metal
atom and the dithiolene ligands, namely what exact oxidation state the metal atom is in. Figure 5

shows some possible resonance descriptions for 1.

CeHs. s s CeHs CeHs o s CeHs CeHs 2 2 CoHs
I N i( I N i I NG I
lom —l
— /, \\ — L\\ // \\ ,‘J / \
CeHs S S CeHs CgHs S S CeHs CeHs g g CeHs
1a 1b 1c

Figure 5: Three possible resonance descriptions for 1.32

1a depicts nickel in a zerovalent state with the dithioketones remaining in their neutral structure. 1c
depicts the other extreme, where both ligands have been reduced to the dianionic species, leaving
nickel in the oxidation state of +4. Case 1b shows an intermediate situation between 1a and 1c with

two radical monoanions and nickel in the oxidation state of +2.23 32
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The ambiguity in assighment of the metal’s - and therefore the ligand’s - oxidation state and the
subsequent difficulties in interpretation of the electrochemical and electric spectroscopic properties

led to a discussion about their true nature for many years.? Particularly worth mentioning in this

30, 32-38 31,39-42 43-45

controversy besides the groups of Schrauzer and Gray are R. H. Holm and co-workers.
They indicated that the complexes of Schrauzer and Gray, in terms of valence electrons, differed only
by two electrons and that it should be possible to reduce the neutral species to the dianionic species
and the other way around.®® They proofed this assumption to be correct and generated the monoanion

and dianion for 1 as well as the monoanion and the neutral complex for 2 along with other group 10

RIS\ ISIR
r N 7 3
] ]
RN
RT S ST R

3

complexes.*

Figure 6: Holm and co-worker’s chemically and electrochemically obtained dithiolene complexes with R = CsHs,
CN, CF3; M =Ni, Pd, Pt; z=0, 1-, 2-.%

However their postulation about nickel being in the oxidation state +3 having an electron configuration
of d” for complex 3 with R = CN, z = 1-, 2-** was proven wrong since their calculation was based solely

on pure 3d-functions.*?

In the end, intensive studies of the mentioned complexes and their derivatives (e.g. Ni(S.CoH2)2 (4) with
z=0, 1-, 2-) in terms of their X-ray powder diffraction patterns, UV- and IR spectra, magnetic- and
electrochemical spectroscopic properties as well as charge density and molecular orbitals (MOs)
calculations consolidated the fact that these complexes are square planar d® metal complexes with
both ligands as radical monoanions and the metal center in the spectroscopically determined oxidation
state of +2.3%* Furthermore Schrauzer and co-workers concluded that reducing the neutral complex

to the mono- or dianion does not change the oxidation state of the metal which remains at +2.3°

petaq s I/I petad

4a 4b 4c

Figure 7: Reduction/oxidation of complexes 4 occurs on the ligand, the central metal atom remains in its
bivalent state. M = Ni, Pd, Pt; R = H, CeHs, CN, CF3%*

Due to cases like these, as mentioned in the beginning, Jgrgensen coined the term 'innocent' for

ligands: “Ligands are innocent when they allow oxidation states of the central atoms to be defined.”?°
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1.2.2 Formal Oxidation State VS Spectroscopic Oxidation State

Besides the term 'innocent’ for ligands, Jgrgensen also proposed the term of a spectroscopic oxidation
state.*® The term 'oxidation state' was invented by German chemist F. Wéhler and, as the word implies,
was originally defined as the number of oxygen equivalents an element can bind to.*” A modern
definition of the oxidation state by L. S. Hegedus describes it as “the charge left on the metal atom
after all ligands have been removed in their normal, closed-shell configuration — that is with their
electron pairs”.*® As Hegedus points out, the oxidation state is a pure formalism and not a physical
property of the atom thus it cannot be measured.*® In contrast, the spectroscopic oxidation state is a
measurable physical property and can be determined by various spectroscopic methods, e.g.
resonance Raman or Méssbauer spectroscopy.*® %° Often, formal and spectroscopic oxidation state are
uniform.?% #° This accounts for complexes with unequivocally charge defined ligands such as H,O or
NH3.%% 51 One example is the low-spin cobalt d® complex [Co(NHs)s]Cls in which both, formal and
spectroscopic oxidation state, are identical (+3).2% % Figure 8 depicts the framework of an
O-coordinated phenolato- and the corresponding phenoxyl radical Fe(lll)-complex K. Wieghardt and

co-workers studied for a prolonged time.>%°

oxidation state

S) idati .
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Figure 8: Framework of a phenolato- (5) and the corresponding phenoxyl radical iron complex 6.3

Photoionization or electrochemical oxidation converts 5 into 6. Via Mdssbauer-, resonance Raman
spectroscopy and X-ray diffraction crystallography Wieghardt and co-workers proved that the
oxidation takes place on the ligand rather than iron; the latter therefore retains its d° configuration,
leading to a spectroscopic oxidation state of +3 for both, the phenolato- (5) and the oxidized phenoxyl

radical complex 6.52° On the other hand the formal oxidation state changes from +3 for 5 to +4 for 6
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(Figure 8, bottom). Discrepancies therefore arise for transition metal complexes with organic radical
open-shell ligands since the ligand formally gets removed with a closed-shell for the formal oxidation
state.* On that account when referring to an 'oxidation state' of a metal center in a complex with NILs
it is important to distinguish between formal and spectroscopic oxidation state. It is also noteworthy
that while a priori the physical oxidation state in such a complex might be difficult to predict, it is by

no means ambiguous at a given time since it is a measurable physical property.?®

1.2.3 MO Interactions Between Metal and NIL

In complexes with NILs, redox reactions can take place on the ligand rather than the metal and it is

difficult to assign actual oxidation states a priori. Why is that?

The answer can be found in the energy differences between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) of such complexes. Since a detailed
description of MO interactions is far too complex and would lead beyond the scope of this work, the
following approximation will be used: electron transfer mainly contains involvement of the HOMO or
LUMO frontier orbitals. In the process of an oxidation, an electron is removed from the HOMO while
in the process of a reduction an electron is added to the LUMO. HOMO and LUMO are therefore
referred to as redox orbitals. As mentioned before this is a vast approximation since electron transfers
affect more than one MO and can effectively re-determine all energy levels in the frontier orbital

system.>¢->8
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Figure 9: Simplified orbital schemes for possible bondings between metal and ligand. Metal’s electrons are
illustrated in yellow, ligand'’s electrons in blue. The color for electrons in the MOs depends on the mixing of
metal’s and ligand’s atom orbitals.”®

In 'classic' coordination complexes the filled o-donor type ligand orbitals are significantly lower in
energy than the metal’s d-orbitals, which are slightly lower in energy than the o*/mt*-orbitals. Unpaired
electrons are therefore usually located at the metal and radical reactions also typically occur there.>
The o/mt MOs contain a strong ligand character (Figure 9, A left). Since numerous ligands, e. g. olefins,
CO, NO possess relatively low-lying empty nt*-orbitals, M-L-rt-backbonding is possible. The suitable

metal d-orbitals are substantially lower in energy than the empty m*-ligand orbitals thus the
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corresponding MOs contain a strong metal character (Figure 9, A right).>® ® Electrons for the m-back
bonding therefore can be described as 'metal electrons', in the o/t MOs as 'ligand electrons'. In this
case both, formal oxidation state and physical oxidation state are the same. The ligand acts

innocently.®

In a complex with NILs, the relative metal’s and ligand’s orbital energies might be inversed. In that case
the filled o-donor type ligand orbitals are higher in energy than the d-orbitals of the metal. This
effectively leads to a reduction of the latter and an oxidation of the ligand also meaning that unpaired
spin-density now is located on the ligand rather than the metal (Figure 9, C left). This redox non-
innocent behavior might also apply when empty m-acceptor ligand orbitals are lower in energy than
the metal’s d-orbitals, leading effectively to a reduction of the ligand and an oxidation of the metal
(Figure 9, C right). In this case, again, is the unpaired electron located on the ligand. Formal oxidation
state and spectroscopic oxidation state are different since in the first case the actual filling of the metal

d-orbitals is higher while in the second case lower than predicted by the formal oxidation state.>®

While A and C describe the metal-ligand bonding as ionic, B depicts a situation with covalent bonds.
Due to strong mixing of energetically close orbitals of metal and ligand, spin density is located on either
the first or the last and possibly switches in-between. Formal oxidation state and physical oxidation

state might be different, depending on where the spin density is actually located.*®

1.2.4 Valence Tautomers

Open-shell complexes can be categorized in one of three ways as shown in Figure 10: as a metal

centered radical (left), a ligand centered radical (right) or as an intermediate of both (middle).>®

M—L M—L <> M—L M—L
metal radical covalent bonding ligand radical

Figure 10: Possible electronic configurations for an open-shell complex.>®
This intermediate state with covalent bonds between metal and non-innocent ligand can be further
specified 1) as a resonance stabilized species with a single minimum due to delocalized valences or 2)
as an equilibrium of two species, so called 'redox' or 'valence tautomers', each with its own minimum

(see Figure 11).5% 6% 62
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Figure 11: Difference between resonance structures and valence tautomers.”?

The first valence tautomers of a redox isomeric cobalt quinone complex have been reported in 1980

by Pierpont and Buchanan.®**® Figure 12 shows the structure (A) and the electronic configuration of

the cobalt atom of the two species (B).%
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[ (3,5-dbsq)(3,5-dbcat)(bpy)] [ (3,5-dbsq)x(bpy)]

Figure 12: A) Equilibrium between [Co""5(3,5-dbsq)(3,5-dbcat)(bpy)] 7 and [Co"5(3,5-dbsq)2(bpy)] 8 in solution.
LS = low spin; 3,5-dbsq = 3,5-di-tert-butyl-1,2-semiquinonate; 3,5-dbcat = 3,5-di-tert-butyl-1,2-catecholate;
bpy = 2,2’-bypriridine; HS = high spin B) Electronic configuration of Co.?% ¢

Lower  temperatures shift  the equilibrium towards  the low-spin complex
[Co"5(3,5-dbsq)(3,5 dbcat)(bpy)] (7) with one ligand in the form of a semiquinonate, the other in the
form of the corresponding catecholate. Higher temperatures lead to a shift of the equilibrium towards
high-spin complex [Co"*"%(3,5-dbsq).(bpy)] (8), which effectively forms due to an oxidation of the
catecholate to the semiquinonate and a reduction of Co" to Co" (see Figure 12 for abbreviations).535°
Both valence tautomers show distinct differences in their structure and charge distribution; therefore
they possess varying optical and magnetic properties, which can be obtained via external stimuli due

to reversible switching. Valence tautomers like these are highly interesting for applications as

molecular switches, sensors and as molecule-based magnets and optical and/or magnetic data storage

media.®%7?
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1.2.5 Redox Active Ligands and NILs

The non-innocent ligands of complexes 1-8 all exhibit redox active behavior, as Figure 13 shows

exemplary for dioxolene 3,5-cyclohexadiene-1,2-dione from complex 7 and 8.3

©
O O O
. SE— . e—
-e -e e
@) @) O
9 9a 9b

Figure 13: Redox series of dioxolene 3,5-Cyclohexadiene-1,2-dione. Q = quinone; SQ = semiquinonate;
Cat = catecholate.”

Quinone 9 can be reduced in two one electron steps: first to its radical anionic form, the semiquinonate
93, then to dianionic catecholate 9b. These steps are reversible as the catecholate can be oxidized back
to the prior mentioned forms.” The same applies for 1,2-dithiolligands (cf. Figure 5) since they can
exist in the neutral dithiol-, the radical anionic dithiolate- and the corresponding dithiolato form.?* 74
Nonetheless, this does not mean that every redox active ligand is automatically a non-innocent ligand.

Figure 14 depicts the redox series for another redox active ligand, 2,2’-bipyridine (10).

N N N N Ne Ne
- Nt o/ N N\ _te o 4/ \—/ \
N\ /7 \ / = \__ /) = _
10 10a 10b

Figure 14: Redox series of 2,2"-bipyridine.”

As can be seen, 10 also exists in the neutral, the radical anionic and the dianionic form.” Figure 15

shows two complexes, both containing 2,2’-bipyridine as ligands: [Ru(bpy)s]** and [Cr(bpy)s]®*.

— — 2+ — — 3+

7 N/ \
7 N\

1 12
Figure 15: Structure of [Ru(bpy)s}** (11)7¢ and [Cr(bpy)s** (12)7".

Electrochemical investigations of 11 show that at +1.26 V an oxidation takes place on the metal and

starting at -1.35 V three reduction steps for the ligand can be observed. Since HOMO (strong influence
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of metal d(m) orbitals) and LUMO (strong influence of ligand rt* orbitals) differ substantially in energy,

these redox processes can unambiguously be described as metal- or ligand centred.?? 2> 7¢

Compound 12 also displays a couple of one electron reduction steps.”® However, while the first
reduction can clearly be assigned as metal centred ([Cr'(bpy)s]>** = [Cr'(bpy)s]**), the following
reduction leads, presumably via transfer of two electrons into the t* orbitals of the ligand, to a species
that can be described as [Cr''(bpy)(bpy~)2]* (or possibly [Cr'(bpy)2(bpy)]*). Successive reduction steps
also result in 'delocalized behavior'.22 23 77. 79.8% Although both complexes 11 and 12 contain the same
redox active ligand, 2,2’-bipyridine, one can see why the term 'non-innocent' is more applicable for
complex 12, in which, due to the energetically great similarity of the metal’s and ligand’s redox orbitals,
strong mixing among them can be observed. Non-innocent behavior therefore is, as implied by

Jgrgensen’s definition, not a function of the ligand alone, but of the entire complex.?® 2% 23

1.2.6 NILs in Catalysis

In the past, even though acknowledged as crucial for the catalytic system as a whole and therefore
subject of tuning for reactivity and selectivity, ligands in inorganic chemistry have just been spectators
in the actual catalytic process. They were well defined closed-shell molecules, e. g. triphenylphospines
or ammonia, unable to be part of redox reactions due to the large amount of energy needed to oxidize
or reduce them. Catalytic complexes with non-innocent ligands go a different way as they try to use a

synergetic interplay between metal and ligand.? - 81,82

Up to now numerous chemicals are industrially prepared via catalysts (approximately 80% of all
chemical and pharmaceutical products),® relying on precious metals like rhodium, palladium, platinum
or iridium.? 8% 8% Their advantage lies in the ability of reacting in well-defined two-electron redox
reactions, while base metals often favor one-electron redox changes, leading to a possible lack of
controlling reactivity, dysfunction or even decomposition of the catalyst.?> 2”8 However, noble metals
are expensive, become more and more scarce and tend to generate toxic waste.?> 818> Base metals
like copper or iron on the other hand are abundant (iron is the second most metal and the fourth most
common element of Earth’s crust)®® 8¢, cheap and much more environmentally benign.®> > But how to

compensate for the limiting deficits?

One answer lies in the above mentioned synergetic interplay between metal and ligand. Nature, as a
true pioneer of non-innocent redox active ligands, is utilizing this fortune of possibilities for a long time
already in its catalytic systems, the enzymes.?® One example for a metalloprotein complex with a non-

innocent ligand is galactose oxidase (GO). This fungal enzyme catalyzes the aerobic oxidation of
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D-galactose (R-CH»-OH) into D-galactohexodialdose (R-CHO) and hydrogen peroxide. The catalytic

mechanism, which proceeds via a radical-type reaction, has been studied in detail by several working

groups (Figure 16).27- 871
Tyr(Y495) Tyr Tyr Tyr
N(H591) O/N N
(H694)N | s N
(Y272) N\ e / \ _PCET. RN
T Hzo o] /O
H o °
inactive active 2 H
(C228) S s
14 16
H20,
H,0
Tyr Tyr Tyr
HO
. N N
Net reaction ~.7
N\ PCET.
+0, G0, +H,0, /O °©
HO
s copper (I
19

Figure 16: Catalytic mechanism of galactose oxidase. Amino acid residues are not shown for overview purposes.
GO = galactose oxidase; PCET = proton-coupled electron transfer.?”

Galactose oxidase consists of a copper(ll) center surrounded by H,0, two histidine and two tyrosine
moieties. Oxidation of Tyr(Y272) leads to the active form of the complex with a phenoxyl radical (14).
After binding of D-galactose to the copper center through elimination of Tyr(Y495), an intramolecular
proton-coupled electron transfer (PCET) takes place (15 = 16), followed by a reductive elimination
step, in which the oxidation state of copper changes from Cu(ll) to Cu(l) (16 = 17). Addition of
molecular oxygen brings the copper back to an oxidation state of +2 (17 - 18). Again an intramolecular
proton-coupled electron transfer takes place, regenerating the oxygen-centered radical of Tyr(Y272)
(18 = 19). Release of hydrogen peroxide upon addition of water and forming back the bond to Tyr(495)
closes the catalytic cycle (19 = 14). As net reaction the alcohol group of D-galactose became oxidized
to the corresponding carbonyl group via oxygen. Obviously in this catalytic process the redox-active
ligand plays a major part and is an active participant: while the substrate’s binding takes place first at
the copper(ll)-center, bringing it close to the active site of the ligand, it is between the substrate and

the non-innocent ligand where the bond-breaking process effectively takes place.?’

Inspired by this, Wieghardt and Chaudhuri developed a Cu(ll)-thiophenol catalyst (20) which is, like
galacose oxidase, able to convert primary alcohols via oxygen into the corresponding aldehyds and
hydrogen peroxide. The catalyst is furthermore capable, unlike galactose oxidase, of forming diols out

of secondary alcohols, leading to a new C-C-bond formation.?” %2
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Figure 17: Structure of Wieghardt’s and Chaudhuri’s Cu(ll)-catalyst. 1) Oxidation of a primary alcohol; 2)
Oxidation of a secondary alcohol.?”

Not inspired by nature, but the observations of Schrauzer et al. and Wing et al. that nickeldithiolenes
react with norbonadienes and 2,3-dimethyl-1,3-dibutadiene to form the corresponding [1+1]
adducts,3 93 % Stjefel and Wang found a way to improve purification of olefins via a catalytic process

(Figure 18).%°

impurities

Figure 18: Electrochemical purification of ethene via a nickel-dithiolene complex (21).?”

Anionic complex 21 can electrochemically be oxidized to neutral compound 22. Unlike 21, 22 possesses
a great affinity to olefins, especially ethene, and forms with it adduct complex 23. Other impure

gaseous components like CO, C;H,, alkanes, do not interact with complex 22 and can therefore be
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removed. Upon electrochemical reduction of adduct complex 23 the ethene, now purified, can be

released and the cycle is closed.?” *°

Another interesting example of a catalyst where the non-innocent ligand plays an active part is

complex 24, reported by Chirik and co-workers (Figure 19).%
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Figure 19: Intramolecular [21t + 21t] cycloaddition of two terminal olefins promoted by a Fe(ll)-complex (24).
X = CHz, C(CO2Et);, N-alkyl.?”

Iron complex 24, containing a dianionic tridentate Ns-ligand which is derived from the redox-active
ligand 2,6-diiminepyridine,®” %8 reacts with a terminal diene upon release of the Ny-ligands to
n-complex 25. This m-complex can react in a formally two-electron oxidative addition step to
compound 26; however, the electrons necessary for this transition do not originate from iron, but from
the dianionic 2,6-diiminepyridine. This leads to an oxidation of the ligand, while iron remains in
bivalent state. In the following reductive elimination step, upon release of the cyclized product, iron
again can maintain its oxidation state of +2, while the ligand becomes reduced back to its original state.
Hence, in the whole catalytic cycle the ligand’s ability to store and release electron density allows iron
to avoid high-energy and therefore unstable oxidation states (like Fe® upon release of the substrate
via reductive elimination). This way, due to the help of the non-innocent ligand, iron can mimic a noble
metal and is able to react in well-defined two-electron redox reactions.”> %’ Other related
Fe(ll)-complexes feature e.g. the intermolecular [21t + 211] cycloaddition of ethylene and butadiene,®

the polymerization of ethylenel® or the intramolecular cyclization of enzynes and diynes.!
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1.3 Molecular Switches

In electrical engineering a 'switch' is defined as a device in an electrical circuit that is able to open or
close the conducting path, thus intercepting or redirecting the electric current.'®? Figure 20 depicts a
simplistic scheme of a switch that can be toggled between the states 'off' (open conducting path) and

‘on' (closed conducting path).

"Off"-Status "On"-Status

electric current electric current electric current
—_— . —_— —_— —_—
| I
open conducting path conducting path

Figure 20: Simplistic scheme of a switch.

The term 'switch' also has found its way into the field of chemistry: molecular-level systems that can
undergo reversible interconversion between two (or more) stable states via an external stimulus are
referred to as 'molecular switches'. 293197 Unlike in electrical engineering this term is used quite liberally
by chemists as in a molecule there are numerous features that could be interconverted like structural-,
magnetic-, electronical-, optical or luminescence properties. There also exists a vast selection of
external stimuli to achieve the switching, e.g. changes in the electrochemical potential, pH,
temperature, the presence (or absence) of other chemicals or absorption of light.1%% 198111 Therefore a
wide range of molecules can be accounted as 'molecular switches' in some way.*® However, these can
be classified as thermodynamically or kinetically controlled.10% 105 106,108 | the first case the molecule
is in a thermodynamic equilibrium with its environment as long as it is receiving the stimulus. Upon
removal of the stimulus, the molecule will revert into its original state. An example for this kind of
behavior are pH indicators. They undergo a distinct color change due to their altered optical absorption
spectrum when they become protonated or deprotonated.'® Figure 21 shows the pH indicator
phenolphthalein, which is colorless in aqueous ethanol at a pH range of 0 —8.2. At a pH above 8.2, due
to deprotonation and opening of the lactone ring, the molecule switches into a wide conjugated

n-system, leading to a purple colored solution.!>114
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27 28

Figure 21: pH indicator phenolphtalein undergoes structural changes depending on the pH of the solution. The
conjugated rt-system of 28 leads to a purple color.**?

Nonetheless, this transformation is not permanent. As soon as the pH shifts back below 8.2 28 will
return to its former form 27. Preservation of 28 therefore is not possible when the pH change is

reversed.'%®

This aspect is different in case of a kinetically controlled molecular switch. Here the stimulus does lead
to a kinetically stable new state which will not return to its prior form even upon removal of the original
stimulus due to a kinetic barrier. To bring it back to the original state, a second stimulus is needed.%*
105,106, 108 This type of switch is intuitively easier to understand as it can be compared on a macroscopic
scale with an ordinary light switch: once the switch was pushed to turn on the light, the light would
stay on indefinitely without need of the switch permanently being pressed.'® A switch of this kind can

normally be found in systems prone to photonic stimulation.’®> An example for this sort of switch is

11-cis-retinal (29), which plays a crucial part in the visual process of mammals (Figure 22).2



1 Introduction

Opsin

29

\\\\\\\\\\\

ion cascade nerv impulse

> » @ —

e

7 e

31

Figure 22: Activation and regeneration of cis-rhodopsin (30) via two different stimuli.®

11-cis-retinal 29, or its Schiff base 30 when bound to the protein opsin, contains a prolonged
conjugated n-system with all double bonds between carbon atoms in trans-conformation — except for
the one between C11 and C12. Upon absorption of visible light the 11-cis-isomer undergoes a
photoisomerization into the all-trans-isomer and stays in this state since a large enough kinetic barrier
hampers the conversion back to the cis-isomer. This state can be described as the 'on'-state of the
molecular switch. The all-trans-isomer 31 is more stretched than the 'buckled' cis-isomer 30 and the
opsin therefore undergoes a conformational change which leads to an ion cascade. The resulting nerve

impulse gets transmitted to the brain and becomes processed. The 'off'-state of the molecular switch

rhodopsin (30) is achieved via a slow acting trans- to cis-isomerization enzyme ® 106115 116
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1.4 Photochromism

'Photochromism' is defined as a reversible interconversion between two forms of a chemical species
induced by light excitation in at least one direction with both forms having different absorption spectra
(besides other physical properties).1? 117 Since the occurring photoreaction only leads to changes in
the electronic structure of the molecule or its arrangement of atoms in space (with or without
reversible bond breaking) the transforming species are isomers.% Excitation with light converts the
stable isomer A into the higher-energy isomer B (Figure 23).1% 17 This conversion can take place on a
timescale as small as several femtoseconds.!*®12! Photoreactions are therefore kinetically controlled.
Upon overcoming a certain energy barrier, Isomer B can convert back to isomer A. Depending on the
system this reconversion can occur fast, slow or not at all (within a reasonable timescale) without a

second stimulus.0®

1) 2) |\

excited states

A T—>

state O

P
-

Figure 23: 1) Scheme of a simple photochromic reaction; 2) corresponding simplified energy profile.2%

If isomer B is thermally stable and no back reaction takes place even when the photogenerated isomer
is exposed to higher temperatures for a prolonged time, this system can be classified as a P-Type
(photochemically reversible type). If isomer B is not thermally stable and converts back to isomer A,

the system can be described as the T-type (thermally reversible type).10 117
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1.5 Molecular Switches based on Photochromism

1.5.1 Spiropyrans

Although observation of photochromism was already reported by Fritzsche as early as in 1867,'2% it
was not before the 1950's when major interest settled in due to the discovery and exploitation of
photochromism in spiropyrans,i% 123-126 indicating technical applications e.g. as photochemical
erasable memory.1% 127 Spiropyrans, as the name indicates, are 2H-pyran derivatives where a second

ring system (normally heterocyclic) is connected to position two of the pyran, making this atom a spiro

atom.

spiral atom

Figure 24: Typical structure of a spiropyran.1%

When irradiated with UV light the usually colorless spiropyrans (and their analogues) undergo a ring

opening reaction, leading to the corresponding colored merocyanine. The intensive color of the latter

is caused by the extended conjugated m-system, 106 128

106, 128

Figure 25: Scheme of a spiropyran and its corresponding merocyanine form.
Upon exposure to visible light or even when stored in darkness, the merocyanine will convert back to
the original spiropyran. Hence the merocyanine form is not thermally stable and spiropyrans can be

accounted as T-type photochromic systems.10®
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In comparison with other photochromic systems, spiropyrans have several advantages: they are
synthetically easy to obtain and modify, they display great quantum efficiencies, their isomers possess
significant different properties and their reversible isomerization can be triggered by a wide range of
stimuli, e.g. irradiation, solvent, temperature, redox potential, pH, mechanical force and metal ions.1%
126, 128132 Figyre 26 shows an interesting example of a spiropyran that responds reversibly and

selectively to zinc ions.” 132
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Figure 26: Addition of zinc ions leads to conversion of 34 to the merocyanine 35. This is accompanied by a color
change of the solution from pale yellow to deep red.*3% 32

However, one of the biggest disadvantages of spiropyrans is their lack of thermal stability against the
back reaction when the initial stimulus is no longer provided and therefore their limited potential in

applications where a prolonged stability of both isomers is needed.%®

1.5.2 Azobenzenes

Another well studied and widely used photochromic compound is azobenzene.'® Although
synthesized already in 1834 by E. Mitscherlich,* 13 it took more than three decades before F. A.
Kekulé postulated its correct structure: two phenyl rings that are connected to one another by a N=N
double bond.** After another 71 years, in 1937, G. S. Hartley accidently discovered that upon
irradiation azobenzene enters a second modification which can reversibly convert back to the starting
compound.’®® Shortly after, both forms, different in chromatographic behavior, color, solubility,
melting point etc.,’¥ were measured vig X-ray crystallography and identified as trans- and

cis-azobenzene.'3®
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Figure 27: Interconversion of trans- and cis-azobenzene.*%

It is this ability to switch between the two geometrical isomers and the accompanying large amplitude
change in size that makes azobenzenes so popular amongst photosensitive compounds.2® Figure 28
shows an example of an azobenzene working as a 'phototweezer' in solvent extraction and
ion-transport systems, as trans-diazobenzene 39 exhibits a much greater binding affinity for larger

alkali metals due to formation of intramolecular sandwich type complexation. 39141
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Figure 28: Azobenzene as a 'phototweezer'. 14

Other advantages of azobenzenes, besides the large amplitude change in size, are their easy
accessibility and tunability. However, like spiropyrans, azobenzenes are T-type photochromic systems
and the cis-isomer usually is not thermally stable, meaning a re-isomerization will take place in the
absence of light. Another demerit is the lacking efficiency of the photoinduced reconversion cis- to
trans, which usually lies below 80%, thus a fast and complete switching between the two states is not

possible.1%
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1.5.3 Stilbene and Stilbene-derived Diarylethenes

Another very well studied family of photochromic compounds are diarylethenes with stilbene as its

simplest representative.%®

Stilbene, discovered in 1843 by Auguste Laurent and named by him after the greek word 'otiA8w’
(stilbo = 'l shine') due to its lustrous appearance®®® %3 is a 1,2-diphenylated ethene which, like

azobenzene, consists of the two stereoisomers trans- and cis-stilbene (Figure 29).14% 14>

NGO = 00
40 4

trans-stilbene -stilbene

Figure 29: Interconversion of trans- and cis-stilbene. 1% 146

The cis-isomer 41 <can furthermore undergo a photocyclization reaction leading to
dihydro-phenantrene (42).117:147. 148 The |atter reverts, when stored under oxygen-free conditions in
darkness, back to cis-stilbene. However, under oxygenic conditions dihydrophenantrene 42 reacts via

hydrogen-elimination irreversibly to phenantrene 43 (Figure 30).1%°

-stilbene dihydrophenantrene phenantrene

Figure 30: Photocyclization of cis-stilbene and following irreversible dehydration.**’ It applies: 2 and 6, 3 and 5
are chemically equivalent.

In order to suppress the unwanted hydrogen-elimination in positions 2 and 6, Irie and Mohri
exchanged the phenyl rings with mesitylene. Their 2,3-dimesityl-2-butene 44 proofed to be reversibly
interconvertible between the ring-open and ring-closed isomer even when exposed to air

(Figure 31).1°
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Figure 31: Ring-open and ring-closed form of 2,3-dimesityl-2-butene. 45 does not react with oxygen.'*°

Though this was a big step towards a photochromic system suitable as optical molecular switch or
memory device, one problem remained: the lifetime of the ring-closed isomer (45) was way too short
for the desired applications (ti, = 1.5 min at 20 °C).'*° Inspired by the findings of Kellogg and
co-workers®! two decades earlier that substitution of the phenyl rings with heterocyclic ring systems
leads to prolonged lifetimes of the ring-closed isomers and their own observations, Irie and Mohri

prepared two new diarylethenes, shown in Figure 32.14% 150

NC CN

| N )

S S

48
Figure 32: First P-type dithienylethenes synthesized by Irie and Mohri.14% 150

The designed molecules 46 and 48 both were a great success as their closed forms 47 and 49 showed
thermal stability when stored at 80 °C for several month or even when heated up to 300 °C. Only when
irradiated with visible light they readily returned to the corresponding open-ring isomer.14% 10 Shortly
after Irie and co-workers showed that dithienylethenes are fatigue-resistant photochromic systems
(photocyclization / back reaction can be repeated more than 10* times)*** 1> and furthermore that
conversion from the ring-open to the ring-closed isomer can be as high as > 99 %.%°* > Ever since
dithienylethenes have gained massive attention as key elements in chemical systems and molecular
devices.1% As this work is also based on dithienylethene ligands, a more detailed view on this chemical

species regarding its properties and opportunities for applications is given in the following chapter.
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1.5.4 Dithienylethenes

Dithienylethenes (DTE) are stilbene-derived P-type photochromic systems with excellent yields in
terms of conversion between the ring-open and ring-closed isomer while being fatigue resistant (in

case there are no hydrogen atoms in position 2 on the thienyl-rings) on this reaction, which in addition

occurs extremely fast.106 149,150,152, 154-158 BTE¢ gre also responsive in the solid state. %163

1.5.4.1 Electronic Communication of Substituents on the DTE Scaffold

Figure 33 shows the backbone of DTEs, the properties of the ring-open and ring-closed isomers and

the communication of the substituents among each other on both isomers.1®

/ \ - /\
A GO

A

s_,02 S_ps
50 51
ring-open ring-closed
colourless coloured
cross-conjugated linearly conjugated
flexible rigid
groups A and B are affected by each other groups A and B are not affected by each other
groups A are not affected by each other groups A are affected by each other
groups B are not affected by each other groups B are not affected by each other

Figure 33: Properties and group interaction among each other on the ring-open and ring-closed isomer.*%

In the ring-open isomer (50) groups A are not affected by one another on behalf of their electron-
accepting or electron-donating character and act independently. On the contrary groups A are affected
by one another on the ring-closed isomer (51) via the m-conjugated backbone. The opposite is true for
communication between groups A and B: on the ring-open isomer (50) they can communicate directly
with each other while this communication breaks off on the ring-closed isomer (51) due to the change
in hybridization from sp? to sp® of the carbon-atoms groups B are connected to0.1% These interactions

are well demonstrated with two examples in Figure 34.
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more acidic
compared to ring-
open isomer

to
ring-open isomer 53

Figure 34: Group affection on two different DTE derivatives (ring-open forms are not shown).20¢ 164 165

In both DTEs (52 and 53) the acidity of the —OH group is dependent on whether the respective phenol
unit is connected with the pyridinium group or not. The pyridinium group, as an electron-withdrawing
group, is able to stabilize the conjugated base of the phenol when both groups can communicate
electronically. For DTE 52 this is the case in the ring-closed form, as the phenol- and pyridinium group
are conjugated via m-backbone. As a result, the pKj is lower (9.3) for the ring-closed isomer compared
to the ring-open isomer (10.5) due to break of conjugation between the phenol- and pyridinium group
when the ring is opened.1% % For DTE 53 it is the other way around: on the ring-closed isomer there
is no communication between the phenol- and the pyridinium group, which is achieved upon ring-

opening. The pK, therefore is lower for the ring-open isomer.1% 165

Figure 35 shows the ring-open DTE 54 with a crown ether unit effectively binding Ca?*-cations. Upon
ring-closure (55) the electron withdrawing aldehyde group becomes electronically connected to the
crown ether via m-backbone. As a result the nucleophilicity and therefore the binding affinity towards

Ca®*-ions becomes reduced by four order of magnitude.'°® 166
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electron-withdrawing aldehyde group not
connected with the conjugated TT-system
containing the crown ether

electron-withdrawing aldehyde group
connected with the conjugated IT-system
containing the crown ether

Figure 35: DTE that can bind and release Ca?*-cations.*®®

1.5.4.2 Concurring Side Reaction to Photocyclization

DTEs are (almost always) designed with a ring system bridging the central alkene bond. This is in order

to avoid unwanted photoreactions concurring with the photocyclization, namely the cis-trans

isomerization (Figure 36).1%6 149
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50a
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50b
ring-closed isomer

Figure 36: Concurring photoreaction: cis-trans isomerization.

trans-isomers of DTEs (50a) are unable to undergo a photocyclization reaction due to positioning of

the thiophene rings.

1.5.4.3 Conformers

While the electronic communication within the DTE scaffold plays an important role, so do steric
effects. As already raised in Figure 33, the scaffold of the ring-open isomer is flexible meaning that the
thienyl units can rotate freely around the C-C o-bonds. This leads to rapid conversion between two
conformers, one with both thienyl rings in parallel and one with both rings in antiparallel alignment

(Figure 37).196 155 Note: helicity will be addressed in the following chapter.
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Figure 37: Conformers of DTE.Z% Only DTE 57 with both rings in antiparallel alignment is able to undergo
photocyclization. % 1>
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It is important to point out that only DTEs with antiparallel alignment of the thienyl rings are able to
undergo the conrotatory 6m-electron photochemical electrocyclization.'% > Upon ring-closure the
former flexible DTE backbone becomes rigid and groups located on the 'outer' ring positions are forced
to diverge from each other. An example that illustrates the use of this feature of DTEs is shown in

Figure 38.1%

ring-open parallel

flexible
antiparallel
H metal cation

ring-closed parallel
rigid 'sandwich structure'

Figure 38: Enhanced performance in binding large metal cations of DTE 59 compared to DTE 61 due to flexible
thienyl units.*®”

The ring-open isomer 59 with antiparallel thienyl rings is in equilibrium with its parallel form 60. In the
latter, both crown ether units are stacked above each other. This makes a synergetic effect between
both units possible, resulting in an enhanced binding of larger metal cations e.g. rubidium or cesium
ions (62). The ring-closed isomer 61 lacks this possibility and both crown ether units act independently

as ionophores. Capability of binding large cations is therefore significantly decreased for 61.1%6 167
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1.5.4.4 Helicity on DTE Scaffolds

Due to free rotation of the thienyl rings about the C-C o-bonds, two conformers are present for the
ring-open isomer, one with parallel and one with antiparallel alignment. Furthermore, the antiparallel
form itself exists of two rapidly interconverting helical species.'® Helicity, derived from greek word
'EME for 'helix', meaning 'twisted' or 'spiral',? describes a special case of axial chirality. Like 'normal’
enantiomers are molecules with helicity present in two forms behaving like image and mirror image
towards each other, yet without the need of a chiral center.!® Figure 39 illustrates this aspect with an

example on a macroscopic scale.

Spiral running clockwise Spiral running counterclockwise
P-helicity M-helicity

Figure 39: Snail shell with P-helicity (left) and M-helicity (right) (beginning from the center).

The spiral on the left snail shell runs clockwise, while the spiral of the right runs anti-clockwise. One
cannot be brought in superposition with the other. The same holds true on a microscopic scale: a given
molecule containing a helix (a fragment looking like a spiral staircase) can, according to the Cahn-
Ingold-Prelog system, be assigned with 'plus-helicity' (P-helicity = spiral running clockwise down) or
'minus-helicity' (M-helicity = spiral running counterclockwise down), depending on the running

direction of that helix (from up to down).68 169
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63 64
P-helicity (R,R)-enantiomer

65
M-helicity (S,S)-enantiomer

Figure 40: Helicity on DTE scaffolds and the resulting enantiomers upon photocyclization.*%°

Figure 40 shows both forms of the ring-open isomer with antiparallel alignment.’% As can be seen,
irradiation of 63 and 65 with UV-light leads to the formation of two new stereocenters and a racemate
of the ring-closed isomers ((R,R) and (S,5)).1% 7° 63 converts to the (R,R)-enantiomer 64, 65 to
(S,S)-enantiomer 66. Hence DTEs contain stereospecific information in their ring-open (helicity) as well
as in their closed-ring form (chiral centers) and are therefore interesting building blocks for chiral
ligand systems.1%® 170-172 Seyeral working groups also have shown that it is possible to obtain in great
excess or even selectively only one of the ring-closed isomers by altering the chemical environment or

irradiation conditions.t7% 173-17

1.5.4.5 Atropisomerism

Atropisomers, named after the greek word 'dtpomocg', 'atropos', meaning 'not turning', are
stereoisomers (rotamers), which occur due to a restricted rotation about a single bond leading to
effectively 'locked up' configurations of a 'plus' or 'minus' isomer. Those can often be visualized as
containing helicity.'’® To distinguish atropisomers from rotamers, Oki defined them to be fully
resolvable at ambient temperature for > 1000 seconds which corresponds to a barrier of
interconversion of >23.3 kcal mol™.Y”7 Atropisomers have been described for the first time in 1922 by

Christie and Kenner in case of 6,6'-dinitro-2,2'-diphenic acid (Figure 41).17®
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Figure 41: Atropisomers of 6,6'-dinitro-2,2'-diphenic acid.*”®
Referring to DTE in Figure 40 this means that if the interconversion of isomers 63 and 65 would be
hampered by a large enough barrier, they could be assigned as atropisomers, if not and a rapid

equilibrium exists, as conformers.

Atropisomerism becomes exploited in designs of chiral ligand systems with applications e.g. in
asymmetric catalysis, 983 medicinal chemistry®®* or as an alternative source for production of chiral
drugs®®®. It becomes also applied in the design of molecular machines, where a conformational change

about a single bond is crucial.’®® Atropisomerism, as mentioned, is a possible feature of DTEs.%®’

1.5.4.6 Gated Photochromism

Until now, examples have been shown where photochemistry dictates how a molecule reacts.
However, it is also possible to design molecules in a way so that their reactivity dictates their
photochemistry.’®® This is called 'gated photochromism' and can be described as a type of
photochromism “where the photochromic process is controlled by passing through a gate, the opening
and closing of which is governed by a non-photochemical process, which can be chemical or by physical
means.”’® Among the most popular photo-switches, gated photochromism has been most

successfully exploited in DTEs.'® Figure 42 shows an example of such.'®
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photochromism

. photochromism
electrochromism OFF

electrochromism

oxidation oxidation

photochromism OFF
electrochromism

Figure 42: Gated photochromism via electrochemistry.8% 1%

Ring-open isomer 69 does not undergo an oxidation at 735 mV while ring-closed 70, due to its
conjugated m-backbone connecting both phenol groups, does. Since quinone 71 does not possess the
cyclohexadiene unit necessary for the ring-opening, no photochemical reaction can occur. Only when
reduced back to diphenol 70 a ring-opening to restore 69 is possible again. The photochemical
response can therefore be controlled in this case by oxidation/reduction; electrochemistry is 'gating'

the photochemistry,106- 189,190

1.5.4.7 DTE Scaffolds Containing (Transition) Metals

The previous chapters showed several examples how properties of DTEs can be altered and controlled
by introducing different organic functional groups on the thienyl units. However, there are also plenty
of possibilities to modify properties of DTEs via e.g. complexation with metals or transition metals.
Likewise interesting is the influence of DTEs towards the metal’s properties due to electronical changes

upon ring closure/opening. The following examples illustrate some of these interactions.
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1.5.4.7.1 Influence of Metal Center on DTE

Figure 43 shows the ring-open and ring-closed forms of Yam and co-workers’ DTE 72 as free ligand and

in a complex with a rhenium species (74).2%
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Figure 43: Observed bathochromic shift of a DTE containing rhenium in its vicinity.*%*

As can be seen, both, the ring-open and ring-closed form containing the rhenium moiety (74 and 75)
receive a significant bathochromic shift when compared to free ligand 72 and 73 (open: 320 nm >
350 nm; closed: 580 nm —> 710 nm). This is likely due to the fact that the imidazoyl and pyridyl rings
are twisted with respect to each other and are not in coplanar arrangement in the free ligand whereas
the rhenium moiety forces them into coplanarity, thus leading to a prolonged conjugated m-system.!!
Photochromic compounds showing absorption and reactivity in the near-infrared region are of high

interest for applications in optical memory storage devices, 7,191,192

Complexation with a metal containing moiety not only may cause shifts of the absorption maxima — it
often causes (major) changes for all spectroscopic properties of the DTE e.g. overall state of energy,
fluorescence, phosphorescence or lifetime and 'quality’ of excitation states via metal to ligand charge
transfer effects.’®"1%° Depending on the metal and how metal and photochromic moiety are connected
(seometry, length, electronic conditions), weakly or strongly interacting systems can be designed to
amplify the desired property. However, too strong an electronic coupling may even cause loss of the

ability for photocyclization (Figure 44).1%
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Figure 44: DTE not able to undergo photocyclization due to strong electronic coupling with a metal moiety.
M = [Ru(NH3)s](PFs).. 1°4

1.5.4.7.2 Influence of DTEs on Metal Center

Another interesting field of research on DTEs is the impact the ring-closing/ring-opening induces on
moieties that are electronically connected with the photochromic unit. Figure 45 depicts a DTE

incorporated in a N-heterocyclic carbene (NHC) backbone with a metal moiety attached to it.!%
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Figure 45: Relocation of electron density upon ring-opening/ring-closure.*?

While in 78 the NHC is able to donate electron density to the metal center, this is no longer possible
after photocyclization (79). Upon ring-closure the central ring’s electrons, namely those of the bridging
ethene unit, become delocalized on the DTE scaffold and are therefore no longer part of the original
key component providing electron density to the metal center. Switching between the ring-open and
ring-closed isomer therefore leads to control over the electron density at the metal center — a feature

with possible applications for photomodulation of catalytic activities.'*

Based on the same principle is DTE 80 (Figure 46). Here the bridging ethene unit is part of the DTE
backbone as well as of the heterocyclic containing boron.* It is worth mentioning that the boron atom

in this example is directly connected to the DTE scaffold without a spacer.
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Figure 46: Change of boron’s acidity due to relocation of electron density upon ring-opening/ring-closure.1%% %7

In ring-open form 80 the five-membered heterocyclic boron ring contains six delocalized m-electrons,
leading to a substantial aromatic character for that moiety. When exposed to pyridine no reaction
therefore takes place since the boron atom’s p-orbital is already occupied and not able to interact with
a Lewis base. Upon photocyclization and formation of the typically DTE ring-closed m-backbone (81),
the dioxaborole ring loses its aromatic character thus leading to boron now acting as Lewis acid able
to bind the pyridine (81 - 82). Irradiation with suitable wavelength leads to ring-open isomer 80 and
release of the pyridine.’?® 197 This example also shows the possibility to control whether electron

density on a certain moiety is increased or decreased via reversible photocyclization of the DTE.
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1.6 Motivation

As illustrated in the previous chapters, DTEs are interesting building blocks as molecular switches,
offering various opportunities to tune their photochromic and the associated electronic properties by
altering their framework and/or by interaction with metalloids/metals. However, while there have
been numerous reports about DTEs with a metal incorporated in a moiety connected to the DTE via
spacer (cf. Chapter 1.5.4.7 for examples), no reports have been found in the beginning of this project
about DTEs with a metal incorporated in the ring containing the DTE’s ethene bridge so that a direct

communication between both, metal and DTE-backbone, exists (Figure 47 bottom).
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Figure 47: Examples of DTEs connected to a metal via spacer (top) and DTE with a metal directly incorporated in
the ring containing the ethene bridge (bottom).

This project therefore started with the idea to synthesize complexes containing a DTE ligand directly
coordinated to a metal center and to study their properties in regard of stereochemistry, a possible
photocyclization and furthermore if the DTE ligand could be capable of showing non-innocent behavior

(Figure 48).
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Figure 48: Possible non-innocent behavior of DTE.

As shown, reduction of 86a leads to formation of radical anion 86b. A second reduction could take

place on the metal, which remains in its oxidation state n upon elimination of a ligand (likely a

halogenide). Complex 86¢ and 86d might coexist in an equilibrium with 86d containing the hexatriene

motif necessary for a photocyclization. When exposed to suitable wavelength, 86d might undergo a

ring-closure reaction, leading to complex 86e in which the oxidation state of the metal is 'locked' in as

long as the ring remains closed. This would serve as an example of a DTE acting as a non-innocent

photoswitch allowing to toggle between two oxidation states of the metal center it is bound to.
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2 Results and Discussion

2.1 Non-Oxido-Vanadium(IV) Metalloradical Complexes with
Bidentate 1,2-Dithienylethene Ligands: Observation of
Reversible Cyclization of the Ligand Scaffold in Solution

In this work | carried out the synthesis of all compounds and most of its characterization. | wrote large
parts of the result and discussion chapter as well as the experimental section. Dr. Matthias Vogt was
the principal investigator and designed the concept of the project. He also wrote the manuscript with
other contributors, mainly Jeffrey R. Harmer. Single crystal X-ray diffraction measurements and
structure refinements have been carried out by Dr. Enno Lork, Dr. Florian Kleemiss, Dr. Malte Fugel

and Prof. Dr. Kunihisa Sugimoto.

Percentage of my contribution of the total workload: experimental concept and design: ca. 80 %,
experimental work and acquisition of experimental data: 80 %, data analysis and interpretation: 70 %,

preparation of Figures and Tables: ca. 80 %, drafting of the manuscript: ca. 70 %.
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